\square

B. TECH.
 (SEM-III) THEORY EXAMINATION 2019-20 DISCRETE STRUCTURES \& THEORY OF LOGIC

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.
2. Any special paper specific instruction.

SECTION A

1. Attempt all questions in brief.
$2 \times 7=14$
a. Draw all trees with exactly six vertices.
b. Find the adjacency matrix $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ of graph given in figure 1.
c. Determine the power set $\mathrm{P}(\mathrm{A})$ of $\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$.
d. Define surjective function.
e. Let f and g be the functions from the set of integers to the set of integers defined by $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3$ and $\mathrm{g}(\mathrm{x})=3 \mathrm{x}+2$. What is the composition of f and g ? What is the composition of g and f ?
f. Consider the following relations on $\{1,2,3,4\}$:

Figure 1
$\mathrm{R} 1=\{(1,1),(1,2),(2,1),(2,2),(3,4),(4,1),(4,4)\}$,
$\mathrm{R} 2=\{(1,1),(1,2),(2,1)\}$,
$\mathrm{R} 3=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,1),(4,4)\}$,
R4 $=\{(2,1),(3,1),(3,2),(4,1),(4,2),(4,3)\}$,
$\mathrm{R} 5=\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4)\}$,
R6 $=\{(3,4)\}$.
Which of these relations are reflexive?
g. List all the ordered pg ts in the relation $R=\{(a, b) \mid a$ divides $b\}$ on the set $\{1,2,3,4$, $5,6\}$ and also dishiny the graphical representation of the same.
h. Find the valued the Boolean function represented by $F(x, y, z)=x y+z$.

SECTION B

2. Attempt anverhee of the following:
$7 \times 3=21$

a.	Prove the proposition $P(n)$ that the sum of the first n positive integers is $-n(n+1)$; that is, $P(n)=1+2+3+\cdots \cdot+n=-n(n+1)$
b.	Verify that the given propositionsare tautology or not. i. $p \vee \neg(p \wedge q)$ ii. $\neg p \wedge q$
c.	

\square
d. What are the degrees and what are the neighborhoods of the vertices in the graphs G and H displayed in Figure 3?

Figure 3
e. For which values of n do these graphs have an Euler path but no Euler circuil?
i. K_{n} ii. C_{n} iii. W_{n} iv. Q_{n}

SECTION C

3. Attempt any one part of the following:
(a) Answer these questions for the $\operatorname{poset}(\{3,5,9,15,24,45\}, \mathrm{V})$.
i. Find the maximal elements. ii. Find the minimal elements.
iii. Is there a greatest element? iv. Is there a least element?
v. Find all upper bounds of $\{3,5\}$.vi. Find the least upper bound of $\{3,5\}$.
vii. Find all lower bounds of $\{15,45\}$. viii.Find the greatest lower bound of $\{15,45\}$, if it exists.
(b) Are the graphs G and H displayed in Figure 4 bipartite?

H
Figure 4
4. Attempt any one part of the following:
(a) Represent the expressions $(x+x y)+(x / y)$ and $x+((x y+x) y)$ using binary trees. Write these expressions in:
i. prefix notation.
ii. postfix notation.
iii. infix notation.
(b) Construct the ordered rooted tree whose preorder traversalis $a, b, f, c, g, h, i, d, e, j, k$, l, where a has four children, c has three children, j has two children, b and e have onechild each, and all other vertices are leaves.
5. Attempt any one part of the following:
(a) Determine whether each of these statements is true orfalse.
i) $0 \in \emptyset$
ii) $\varnothing \in\{0\}$
iii) $\{0\} \subset \varnothing$
iv) $\emptyset \subset\{0\}$
v) $\{0\} \in\{0\}$
vi) $\{0\} \subset\{0\}$
vii) $\{\varnothing\} \subseteq\{\emptyset\}$
\square
(b) For each of these relations on the set $\{1,2,3,4\}$, decidewhether it is reflexive, whether it is symmetric, whetherit is antisymmetric, and whether it is transitive.
i) $\{(2,2),(2,3),(2,4),(3,2),(3,3),(3,4)\}$
ii) $\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$
iii) $\{(2,4),(4,2)\}$
iv) $\{(1,2),(2,3),(3,4)\}$
v) $\{(1,1),(2,2),(3,3),(4,4)\}$
vi) $\{(1,3),(1,4),(2,3),(2,4),(3,1),(3,4)\}$
6. Attempt any one part of the following:
(a) Which of the partially ordered sets in Fig 5 are lattices?

i.

ii.

iii.

Figure5
(b) What are the chromatic numbers of the graphs G and H shown in Figure 6

Figure6
7. Attempt any ine part of the following:
(a) Consider the group $G=\{1,2,3,4,5,6\}$ under multiplication modulo 7.
(i) Find the multiplication table of G. (ii) Find $2^{-1}, 3^{-1}, 6^{-1}$.
(iii) Find the orders and subgroups generated by 2 and 3. (iv) Is G cyclic?
(b) How many cards must be selected from a standard deck of 52 cards to guarantee that at leastthree cards of the same suit are chosen?

